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Transport in Random Correlated Fields 
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A review is given of recent developments in the diffusion properties of particles 
in the presence of local random fields as well as the conductivity of the analog 
random resistor network. The effect of long-range ferro- and antiferro-type 
correlations between the local fields on the diffusion and conductivity properties 
is considered. A physical realization for such spatial correlations is diffusion on 
linear polymers in the presence of external uniform bias field. For this case a 
universal diffusion law was found independent of the fractal dimension of the 
polymer chain or the Euclidean dimension in which the polymer is embedded. 
Recent results for diffusion in two dimensions in the presence of a special case 
of correlated local fields are also reviewed. 
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1. I N T R O D U C T I O N  

Diffusion in the presence of random local fields has been attracted much 
interest in recent years./~ ~5~ This area is part of the general field of 
transport in random media. The random field model in one dimension can 
be defined as follows. A particle at site i has the probability p+ = (1 + Ei)/2 
to step to the right and the probability p = ( 1 -  Ei)/2 to step to the left. 
The local bias field Ei can obtain the values - 1  ~<E~< 1 from a given 
distribution p(Ei). The simplest case is that E~ is chosen to be + E  with 
probability c and - E  with probability l - c ,  i.e., p(E~)=cg(Ei-E)+ 
(1 - c )  6(E i + E). The problem of diffusion in the presence of random fields 
quenched on the lattice, F(r), can be formulated in the continuum 
d-dimensional space in the form of a differential equation. Using the 
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Fokker-Planck equation, it can be seen that the probability density P(r, t) 
satisfies 

0P 
- - = D V 2 p - V . ( F P )  (1) 
& 

In d =  1, F ( x ) =  _+Ei taken from the above distribution. 
Sinai (1) calculated the mean-square displacement ( x  2) exactly of a 

single random walker in one dimension for the case of symmetric 
probabilities, i.e., c = 1 - c = 1/2, and found a logarithmic time dependence, 

( x  e ) ~ log 4 t (2) 

The prefactor depends on the field strength E; for details see ref. 5. In fact, 
the Sinai result is more general and states that asymptotically (t ~ oe) the 
distribution of displacements x, P(x, t), is a normalized function and scales 
with y - x / ( x ) = x / l o g  2 t. Derrida and Pomeau (2) studied the case of a 
nonsymmetrical distribution of local bias fields Ei and found for the mean- 
square displacement a power-law time dependence, 

( x 2 )  ~ t2v ;  v = l o g [ c / ( 1 - c ) ] / l o g [ E / ( 1 - E ) ]  (3) 

The form of the probability density P(x, t) for a random walker to be 
in site x at time t was studied by Nauenberg (3~ (heuristically), Kesten (4) 
(rigorously), and more recently by Bunde et al. (5~ (numerically). Kesten 
found analytically for the displacement x a Poisson distribution when the 
local fields are symmetric and uniformly distributed between - 1  ~< E~< 1, 
i.e., 

1 
P(x, t ) ~  e -Clyl (4) 

Bunde et al. find numerically a different and more localized form for 
the case of a single value for E. The differences between the theoretical 
prediction and the numerical data might be due to a difference between 
averaging over typical (most probable) configurations which were taken in 
the numerical simulations and averages over a// configurations taken in the 
analytical approach. Similar differences were also suggested in a different 
context by Harris and Aharony. (6) Indications of multifractal features in the 
moments of P(x, t) were observed numerically by Roman et al. (7) and were 
reported also by Stanley. (8) 

The problem of first passage times (FPT) and survival probability 
of particles diffusing in the presence of traps and random fields was 
studied by Havlin et al. (91 They distinguish between typical FPTs, which 
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scale according to exp(aL 1/2) (L is the system size), and averages over 
all configurations, which scale as exp(aL). These results were proven 
rigorously by Noskowicz and Goldhirsch. (1~ Based on the above results, 
Havlin et al. find that the survival probability of an independent particle 
diffusing in the presence of a finite concentration p of traps in a 1D 
random field system decreases asymptotically (when averaging over all 
configurations) with time as a power law, S ( t ) ~  t -~. The exponent c~ 
was found to depend on the field strength E and on p, 

= 2 log[l / (1  - p)] / log[(1 + E)/(1 - E) ] .  For short times when typical 
configurations are considered a log-normal distribution of FPTs was 
obtained, 

S(t) ~ e x p [ -  (log 2 t)] (5) 

All the above studies assume that the diffusing particles are 
independent. What happens when interaction between particles, such as a 
hard-core interaction, is taken into account? This question was addressed 
in a recent work by Koscielny-Bunde et al. ~ They found that the Sinai 
law, ( x  2) ~ log 4 t, for independent particles is still valid, and that hard- 
core interaction only modifies the prefactor of log 4 r which tends to zero 
when the concentration of the hard-core particles approaches unity. 

The results described above are for one-dimensional systems. Much 
less attension was given to higher dimensions. Fisher (~2~ and Luck (I3) show 
that the probability density for such a random walk in any dimension 
corresponds to the Green's function of a nonlinear field theory. When 
applying a renormalization group theory, they find that the upper critical 
dimension for diffusion in the presence of random fields is d =  2 and above 
two dimensions diffusion is expected to be regular. In two dimensions, F(x) 
may be divided into divergence-free and curl-free components. Fisher et 
aL ~2) studied the diffusion properties in various cases. For the curl-free case 
V x  F =  0, they find that ( r2 ( t ) )  is subdiffusive and has a logarithmic time 
correction. The curl-free case is more realistic, since it corresponds to a 
diffusion of a particle in the presence of a scalar potential V, with F =VV, 
such as diffusion on a rough surface in the presence of a uniform gravita- 
tional field. The case of diffusion in two dimensions in the presence of 
random fields was studied also by Marinari et al. (14) 

Below two dimensions, the ~ expansion yield a power-law anomaly in 
time and one dimension is the lower critical dimension. On the other hand, 
numerical results of Pandey (Is) for the mean square displacement ( r2 ( t ) )  
in 3-dimensional systems indicate that transport is more enhanced than 
regular diffusion. For  a rigorous upper bound for the mean square 
displacement in d~>2, ( r2( t ) )<~t  2v, where v is the self-avoiding walk 
exponent v ~ 3 / (d+  2); see Schwatz and Havlin. (~6) 
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Recently (17) a novel and simple random resistor network which is 
analogous to the diffusion in a random field system was studied. This is 
reviewed in detail in Section 2. The Sinai random field model assumes that 
the field at site i is independent of the field at site j, i.e., the local fields are 
spatially uncorrelated. This model was generalized recently (iv) to include 
short- and long-range correlations between the random bias fields. Both 
the diffusion problem and its resistor analog were studied in the presence 
of those correlations and are reviewed in Section 3. Transport  in the 
presence of correlated random fields can be mapped into the problem of 
diffusion in chainlike fractal systems in the presence of an external uniform 
bias field. ~ For  the latter case a universal diffusion law is found, 
<r 2) ~ log  2 t, independent of the fractal dimension of the chain or the 
dimension in which the chain is embedded. This application will be 
reviewed in Section 4. When the random fields are correlated even via 
short-range correlations, deviations from Sinai's law o c c u r .  (19) There exists 
a critical moment  q = qc above which the moments of displacements <x q > 
scale as a power law of time and not logarithmically. This is reviewed in 
Section 5. Finally, diffusion in the special case of the two-dimensional 
correlated random field model will be presented in Section 6. 

2. THE ANALOG RESISTOR SYSTEM 

Consider a set of N resistors connected in series, where the resistance 
Rj of resistor j is related to the resistances of its neighbors by 

Rj+ 1 = (1 + e ) ~ ' R j  (6) 

Here e > 0 is arbitrary, and rj is chosen randomly to be + 1 or - 1  (see 
Fig. 1). Since neighboring resistors may only differ by a factor of (1 +e),  
this model ensures a smooth spatial variation of the resistance. Using 
Eq. (6), the resistance of bond l in the network is 

R~ = RI(1 + e) ~,<=Iv (7) 

This model represents a random multiplicative system. This is to be 
compared to the regular random walk model, which is a random additive 
process. Note that the set of {rj} can be viewed as generating a walk; 

I I [ 

R ' I g 4 2" I 2 I 2 4 8 4 8 . . .  
. o ,  

T "  - I  - I  +l +1 +1 - I  4-1 +1 *1 - I  +1 +1 " "  

Fig. 1. A realization of the present model  with ~ = 1. 
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r j =  +1 corresponds to a step to the right and r j =  - 1  corresponds to a 
step to the left. 

To see that this resistor network is analogous to diffusion in the 
presence of a random field, consider the diffusion of a random walker on 
this system. The probabilities Wj, i_+I of hopping from site j to its two 
neighbors are proportional to the inverse of the corresponding resistances 
between the sites (see Fig. 2), 

wj, j 1 = ( l + e ) r  j (8) 
Wj, j+ I 

From the normalization condition W H + ~ +  W/,j 1 = 1 we obtain 
Wj, j+ 1 = (1 + E ) / 2 ,  where E _  = e/(2 + e), and E plays the role of a loca l  b ias  

f i e ld .  Thus, a random walk on this resistor network system moves 
according to the rules of a random walker in the presence of a random 
field. It is therefore expected, due to the relation between conductivity and 
diffusion, that the laws in both cases will be similar. 

The one-dimensional model defined in Eq. (6) includes the essential 
physics of correlated spatial disorder, but is simple enough to be treated 
analytically. Note that there exist realistic systems for which this model 
might be relevant; (i) Measurements of electrical resistance of elongated 
cylindrical rock samples saturated with salt water, as a function of length. 
One property of such systems that is already known experimentally (2~ and 
is consistent with our model is the zero-percolation threshold of such 

I 
1 

i - t  

I 
I 
I 

Fig. 2. The connection of the present model to diffusion in the presence of a spatially 
correlated bias field can be seen by connecting in series 2 nj parallel equivalent branches 
between each node. The ratio of probabilities Wj, j+ I/Wj,/ 1 is the ratio of the corresponding 
number of branches on either side of node j. 
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systems. (ii) Measurements of resistance to flow in clogged pipes (or "blood 
vessels"). The process of clogging involves deposition of material on the 
walls of the pipes, which is faster in and near regions where material is 
already deposited. The deposition profile may be expected to produce local 
resistances to flow that are more complex than simple random additive 
processes. 

3. C O R R E L A T E D  BIAS FIELDS 

A quantity of interest is the rms displacement in the N-step walk 
defined by the set of {zj}, 

X ( N )  - 7, (9) 
j 1 

In order to calculate X(N) ,  we must defined the distribution of the {zj}. 
Consider two cases: (i) {zj} uncorrelated and (ii) {rj} with short- or long- 
range spatial correlations. For case (i), where the {rj} are uncorrelated, 
( r i r j ) = 6 i ,  j and thus X ( N ) = x / N ,  which is the familiar random walk 
result. For case (ii), where the {z j} have short- or long-range correlations, 
X ( N )  depends on the details of the correlations. Assume that our large but 
finite system is part of a much larger periodic system of size (2 > N. We 
further assume that the distribution is symmetric under reversal of all the 
~j and that the Fourier transforms of the {zj}, given by 

1 f2 

~Cq=x/-~,~lz ,e  'q' (10) 

are correlated through the power-law relation 

1 
( Z q r. q) q'~ forsmal lq  (11) 

If two neighboring zj tend to be of the same sign (which I call the ferro 
case), then )o > 0; while if two neighboring rj tend to be of opposite sign 
(the antiferro case), then 2 < 0. For uncorrelated {zj}, we have 2 = 0. 

It is straightforward to verify that 

where 

1 
X2(N) = ~  <%V_q) If(q, N)I 2 (12) 

q 

e -- iqOV + 11_ 1 
f (q ,  N ) -  ,q (13) 

e 1 
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When f2 ~ oe, we find, on substituting (11) into (12) and converting the 
sum to an integral, that the dominant contribution scales for large N as 

X2(N)~N 1+;, 1 ~ 2 < 1  (14) 

We will be interested in the result characterizing the total resistance of a 
chain of length N, 

N N 

R= ~ Rz=R 1 ~ (1 +~)z~ =Iv (15) 
l = l  l = 1  

To be more specific, an interesting quantity is that of a typical 
measurement of R =- R~ot(N ), the total resistance of the N-resistor chain. In 
a random walk, the mean square displacement, for example, coincides with 
the most probable value. In the present model, and in random 
multiplicative processes in general, it is natural to find quantities whose 
mean and most probable value differ markedly./211 

If we consider for example the resistance R of the entire chain, we find 
that its average (R> is dominated by improbable configurations of the 
rj (e.g., ~i = 1 for all j) ,  for which the value of the resistance is large. For 
case (i), a direct calculation yields (Rt> = {(1/2)(1 + ~ ) +  (1 + e ) - l }  t - l ,  
resulting in l n ( R ) ~ N .  On the other hand, calculating the average 
conductivity ( l / R )  yields (22) (1/R>~N 1/2. This result is also implied 
from the dominant contribution of improbable configurations of very small 
resistances. 

The typical measured value of R is dominated by its most probable 
value; the probability of obtaining for Rto t a value that differs by an order 
of magnitude from the most probable value vanishes with N. The typical 
value of a single resistor Rty p is represented by the logarithmic average (23) 

Rty p ~ exp(ln R> ~ (1 + e) X(N) (16) 

The number of such typical resistances (i.e., typical walks) is of the 
order of N. Hence, from (9) and (16) the logarithmic average (ln R )  scales 
a s  

(In R )  ~ ln(Nx Rtyp) ~ X(N) ln(1 + e) + In N (17) 

where the quantity X(N) will depend on the details of the correlations of 
the rj determined above. Note that the quantity (ln R )  is sensitive to the 
details of the ensemble, while the quantity ( R )  is simply dominated by one 
configuration in the ensemble. 

822/58/3-4-17 
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Combining (17) and (14), one finds 

(lnR)~N(I+;~>/2+lnN, -1~<2~<1 (18) 

The validity of (t8) is supported numerically. To this end, we had to 
generate a set of {rj} that have long-range correlations as in (1l). Each r i 
configuration is in one-to-one correspondence with an N-step random 
walk: X:(N) is the mean square displacement, characterized by the fractal 
dimension dw, X2(N)~ N zIG. From (14), d w = 2/(1 + 2). Therefore one can 
generate a distribution with any desired 2 ( - 1  ~< 2 ~ 1) by generating the 
corresponding walk with 1 < dw < oo. We consider the full chain of N sites 
to consist of strings, each of m sites, where all ZJ in one string have either 
the same sign (ferro case) or alternating signs (antiferro case). The length 
m of each string is chosen from the power-law ("Levy flight"; see, e.g., 
ref. 24) distribution 

P(m)~m -B (19) 

The exponent /3 determines the correlation parameter 2 and therefore d,.. 
We find that in the ferro case (2 > 0) 

I 1, f l ~ 2  

2 = 2 / (4- f i ) ,  2~<fl~<3 (20) 
d w = l + 2  {.2, fl~>3 

while in the antiferro case (2 < 0) 

2 _~2/(fi-1)' l~ f l~<2  (21) 
d w - l + ~  ~2, f i > 2  

The antiferro case corresponds to a walk with a singular waiting time 
distribution, ~ ( t ) ~  t -~  see, e.g., refs. 25 and 26. Equations (20) and (21) 
are obtained by noting that (rqZ_q) is the Fourier transform of (zor l )  
and this is related to P(m) as defined by (19). 

The above predictions are supported by computer simulations. 
Figure 3 is a double logarithmic plot of ( ln R )  2 and the fluctuation 
(ln 2 R )  - (In R} ~ for the ferro case wi th/3= 1.5 (corresponding to 2 =  1) 
as a function of N. Both curves have the same asymptotic slope, (1 + 2 ) =  2, 
as can be seen by following the procedure used to derive Eq. (18). For 
( ln R )  2, the convergence to the predicted slope is slow due to the in N 
correction in (18), while the fluctuations show the predicted slope already 
at small values of N. 

Figure 4 shows the fluctuation of ( ln R )  for fl = 1.5, 2.5, and 3.5 in the 
ferrocase (corresponding to 2 = 1, 1/2, and 0) and for/3 = 1.5 and 2.5 in the 
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Fig. 3. Plot of (In 2 Rtot) and (In 2 Rto t )  -- ( In  Rto t)2 as a function of the size of the system 
N for e=O.5 and /~= 1.5, corresponding to 2 = 1 (ferro case). Note that the best slope to 
(ln 2 Rto t) is slightly lower than the correct value due to the correction term discussed in the 
text. After ref. 17. 

antiferrocase (corresponding to 2 = - 1 / 2  and 0). The numerical results are 
in excellent agreement with the predictions, Eqs. (18), (20), and (21). 

The mean logari thm of the time the r andom walker takes to travel a 
distance L along the chain is propor t iona l  (2527) to the fluctuations of the 
field biased against the walker, 

( In  t )  ~ X ( L )  (22) 

Thus, the first passage time in the diffusion problem plays a similar role as 
the resistance in the resistor problem. Correspondingly,  when taking into 
account  correlations between the local bias fields which are determined by 
the correlations between the ~ [see Eq. (11)]  one obtains, upon  sub- 
stituting (14) into (22), 

( In  t ) ~ L (1 + ~//2 (23) 

The Sinai result is obtained for the average of the displacement for fixed t. 
If we assume that our  result (23) will hold upon  fixing t and averaging L, 
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Fig. 4. Double logarithmic plot of <ln 2 Rto t>-  <ln Rtot> 2 for e =0.5 and various values of 
ft. Ferro case: fl=l.5 (11), 2.5 (A), and 3.5 (A). Antiferro case: fi=l.5 (Q) and 2.5 (�9 
After ref. 17. 

we recover the Sinai result in the particular case Z = 0 (uncorrelated fields). 
The condit ions under which the average can be changed from fixed L to 
fixed t are discussed in Section 5. Note  that the time average <t > scales as 
ln< t> ,-~ L, in analogy with the resistance problem. 

4. B I A S E D  D I F F U S I O N  IN C H A I N L I K E  F R A C T A L  S T R U C T U R E S  

In this section we study r andom walks on linear fractal structures, 
such as polymer  chains, under  the influence of a uniform external field E. 
For  a zero field, diffusion is anomalous  and the mean square displacement 
of  a walker on the chain depends on the fractal dimension df of the chain 
as ( r2( t )> ~ t 1/dy. When a nonzero  external field is applied, it was shown (18) 
that  ( r2( t )>  is universal and independent  of d I, 

(r2(t)  > ~ log 2 t (24) 

To derive Eq. (24), consider a chain of N ordered segments (see 
Fig. 5). A r andom walker steps between nearest-neighbor sites on the 
chain, under  the influence of a uniform bias field, that  have equal 
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Fig. 5. (a) An illustration of a fractal path consisting of N =  9 consecutive ordered segments 
and (b) the corresponding path on the square lattice. The arrows represent the direction of 
the local bias fields induced by the external field E. After Roman et al/jsl 
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components in the directions of the positive axis. When the particle moves 
along the path it sees a random field which depends on the direction of the 
given bond relative to the external field (see Fig. 5). The random field is 
spatially correlated according to the structure of the chain. Only when the 
chain is a random walk are the random fields uncorrelated. Thus, assuming 
that Eq. (23) holds also upon fixing t and averaging over the displacement, 
it follows that the mean square displacement ( l  2 ) along the path of the 
chain is given by 

( l  2) ~ (log t )  4/(1 +~) (25) 

Since r = Z t  1 Ui'  it follows that ( r  2) = Z~,j- 1 (ui" uj). From arguments 
similar to those leading to Eq. (14), it follows that 

( r  2 ) =- l 1 + ;" ~ l 2/+ (26) 

The exponent d f  is the fractal dimension of the chain. Substituting Eq. (26) 
into (25) yields the universal law, Eq. (24). 

As an example, let us consider the case where the path is a self- 
avoiding walk (SAW) in d dimensions. The correlations (ui" u j )  have been 
studied by Domb (28) and the fractal dimension of SAWs is given by the 
Flory formula, dy = (d+  2)/3. Thus, for diffusion on a SAW in d =  2 in the 
presence of a uniform external field we expect 

( l  2) ~ log  8/3 t (27) 

To test this prediction, (12) on self-avoiding walks in d = 2  was studied 
numerically. (18/Long SAWs of about 1000 bonds were generated using the 
enrichment method. ~29) Diffusion on these chains was performed by the 
exact enumeration method ~26) and the second moment (12) was calculated. 
Results averaged over 1000 cofigurations and large fields are plotted as a 
function of logS/3t in Fig. 6. The linearity of the curves supports Eq. (27). 

5. M O M E N T S  OF DISPLACEMENT:  EFFECTS OF 
CORRELATIONS 

For diffusion in the presence of symmetric random local fields with 
uncorrelated local fields the probability density P ( x ,  t)  is given by Eq. (4). 
Using this form, it follows that all positive moments behave as 

( Ix] q )  ~ log 2q t (28) 

In this section, I review recent results (19) on the effect of correlations on 
Eq. (28). The main result is that even for short-range algebraic correlations, 



Transport in Random Correlated Fields 665 

1500 

1000 

500 

E 

(.) 0.8 

(o) o9  

I I I l 

0 (tn t) 8/3 500 

Fig. 6. Plot of the mean square displacement along the path <l 2> as a function of log 8/3 t 
for two values of the bias field E. The straight lines support the prediction (27). After Roman 
el al. (~8) 

Eq. (28) does not hold for all moments. A rigorous proof  was given (~9~ 
that there exist a critical moment  q = q c  above which <]xi q)  is a power 
law of t. 

The correlations in the local fields are given by their Fourier com- 
ponents, Eq. (11). The case of uncorrelated random fields is 2 = 0. One 
might therefore expect that the Sinai generalization (28) will hold for ), = 0. 
In fact, it was shown in Section 3 that when averaging log t for fixed L one 
obtains {log t> ~ L  {~ +~/2, a result similar to Sinai's result for 2 = 0 .  The 
difference is that Sinai's result corresponds to averaging moments of 
displacements for fixed t, rather than averaging log t. In the following 
I prove that Eq. (28) is not valid for 2 = 0  when the correlations decay 
algebraically. Namely, the fact that the correlations are short ranged is not 
sufficient to ensure Eq. (28) for a general q moment.  
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Consider the displacement moment (txl  q). The average involved here 
is a double average. First, the average over different walks is obtained as 
a functional of the fields, and then one averages over the field configura- 
tions. I define the two averages 

<lxl~> ~ <lxl~>~ (29) 

where ( . ) ~  denotes averaging over the walks and the bar denotes 
configurational averaging. 

Consider now a configuration in which from the initial site of the 
walker, there is a section of length m taken from the distribution, Eq. (19), 
to its right. We compare now the actual walks with walks such that the 
walker stops at the end of the section when arriving there. It is clear that 

(30) 

where w'(m) represents the walks that stop at the end of the segment of 
length m. It is easy to see that 

~'t q, t~<m (31) 
([xlq)w'(m)~{mq, t > m  

The upper case follows from the fact that the average displacement in the 
presence of a uniform field is proportional to t, while the lower case follows 
from the fact that the walker is trapped at m once it arrives there. 

Since P(rn) is the probability that the initial string will be of length m, 
it follows that 

< Ixl q > ~ ~ P(m)(  Ix[ q ) w'(m) (32) 
m 

Finally, by breaking the above summation into two regimes, we obtain 

(Ixlq)>~ ~ P(m)mq+ ~ P(m)tq~t q-~+l for q - f l + l > O  (33) 
m < l  m > l  

Since (tXI q) is bounded from above by t q, it follows that ([xl q) behaves 
assymptotically as a power of t, provided that q > qc =/3 - 1. It is seen that 
even for the case 2 = 0 ,  i .e . , /~>3 as long as/~ is finite, Eq. (28) is not valid 
for all moments. Clearly, the field configurations contributing to the right- 
hand side of Eq. (33) are very rare. If one consider (Ixlq)w for a typical 
configuration, it is expected that 

(Ixl"  ) wr ~ I-log t] 2q/~1 + ~1 (34) 



Transport in Random Correlated Fields 667 

Thus, for any finite value of/~, one expects a crossover from a logarithmic 
behavior (q < qc = fi - 1 ) to a power-law behavior (q > qc = fl - 1 ). 

An interesting physical example of this crossover is that of diffusion on 
a polymer chain in the presence of an external uniform field. The polymer 
can be described as a d-dimensional self-avoiding walk. For  d <  4 we find 
qc= 3 - 2 / d  I , where dr= 3 / (d+ 2) (Flory) is the fractal dimensional of the 
chain, so that one expects for q < qc a logarithmic time dependence, and for 
q > qc a power-law time dependence. For d >  4 it could have been expected 
that the self-avoiding walk is equivalent to a random walk and therefore 
Eq. (28) would apply for all q. It can be shown, however, that due to the 
corrections to a random-walk behavior the mean square end-to-end 
distance of a self-avoiding walks in d >  4 is 

( R  2 ) ~ N(1 + A/N  ~(d)) (35) 

We find that the fl corresponding to the self-avoiding walk is finite and 
related to e(d) via 

~ ( d ) = f l - 3  (36) 

For  example, for d =  5, c~(5) = 1/2; thus, fl = 7/2 and qc = 5/2. 

6. D I F F U S I O N  IN T H E  P R E S E N C E  OF R A N D O M  FIELDS 
IN d = 2 :  A SPECIAL  CASE 

In a recent work Blumberg-Selinger et al.(3~ studied a special case of 
diffusion in a two-dimensional random field system. In this model the 
positive x axis represents random potential V(x, 0) with a random gradient 
+ 1. Similarly, for the positive y axis, one has V(0, y). The potential at a 
general site x, y > 0 is defined as 

V(x, y) = V(x, o) + z(o, y) (37) 

This potential is strongly correlated, and the field F = VV(x,  y). It was 
found rigorously (3~ that for this model Eq. (4) can be decoupled into two 
independent one-dimensional equations with uncorrelated random fields. 
Thus, the mean square displacement follows, 

( r2 ( t ) )  ~ log 4 t (38) 

similar to the one-dimensional Sinai result, Eq. (2). 
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